This course was created with the
course builder. Create your online course today.
Start now
Create your course
with
Autoplay
Autocomplete
Previous Lesson
Complete and Continue
Python for Traders Masterclass
Module 1: Introduction
1.1. Welcome to the Python for Traders Masterclass
1.2. Why Should Traders Learn to Code?
1.3. Why Should Traders Learn Python? (4:23)
1.4. What Will I Gain From This Course?
1.5. What Topics Will Be Covered?
1.6. Who is the Intended Audience for This Course?
1.7. How Much Finance Knowledge Do I Need?
1.8. How Much Coding Knowledge Do I Need?
1.9. Quiz: Is This Course For Me?
1.10. Module Summary
1.11. Join the Community!
Module 2: Python Fundamentals for Finance
2.1. Python Installation and Setup
2.2. Running Python Code
2.3. Basic Python (26:34)
2.4. Intermediate Python (38:47)
2.5. Advanced Python (24:27)
2.6. Data Science in Python
2.7. Key library: Pandas (10:48)
2.8. Key library: NumPy (3:22)
2.9. Key library: Matplotlib (5:22)
2.10. Key library: Statsmodels (15:26)
2.11. Key library: Scikit-learn (4:40)
2.12. Module Summary
Module 3: Working with Financial Data
3.0. Getting Access to Course Channels
3.1. Introduction to Financial Data: Time Series and Cross-Sections (11:07)
3.2. Data Acquisition and Cleaning (18:09)
3.3. Time Series Analysis (13:38)
3.4. Understanding Stationarity (11:55)
3.5. Time Series Forecasting
3.6. Exploratory Data Analysis
3.7. Module Summary
Module 4: Understanding Trading Algorithms
4.1. What Are Trading Algorithms?
4.2. Algorithm Design Principles
4.3. Data Management Module (15:12)
4.4. Signal Generation Module (15:12)
4.5. Risk Management Module (10:58)
4.6. Trade Execution Module (10:27)
4.7. Portfolio Management Module (11:05)
4.8. Backtesting Basics
4.9. Backtesting Software
4.10. Understanding and Avoiding Overfitting
4.11. Module Summary
Project 1: Research & Backtest a Realistic Trading Algorithm
Project 1 Overview (6:57)
Step 1: Get Started on QuantConnect (6:53)
Step 2: Formulate a Strategy
Solution: Formulate a Strategy
Step 3: Develop the Algorithm
Solution: Develop the Algorithm
Step 4: Run a Backtesting Analysis
Solution 4: Run a Backtesting Analysis
Project Summary
Module 5: Automated Data Collection, Cleaning, and Storage
5.1. Sourcing Market Data (5:38)
5.2. Working with CSVs (0:31)
5.3. Working with JSON
5.4. Getting Data from APIs (51:35)
5.5. Getting Data from Websites (8:28)
5.6. Persisting Data in Files and Databases (11:49)
5.7. Automating Data Collection Jobs
5.8. Module Summary
Module 6: Analyzing Fundamentals in Python
6.1. Structured vs. Unstructured Data
6.2. Types of Fundamental Data (2:03)
6.3. Gathering & Cleaning Fundamental Data
6.4. Automated Screening & Filtering (11:33)
6.5. Factor Analysis of Fundamental Data
6.6. Natural Language Processing on News Articles (14:27)
6.7. Natural Language Processing on Annual Reports
6.8. Using LLMs for Natural Language Processing
Module 7: Options & Derivatives Pricing Models
7.1. Introduction to Options & Derivatives
7.2. Basics of Option Pricing
7.3. Implementing The Binomial Options Pricing Model in Python
7.4. Implementing The Black-Scholes-Merton Model in Python
7.5. Monte Carlo Simulation for Option Pricing (4:56)
7.6. Pricing Exotic Options with Monte Carlo Simulations
7.7. Interest Rate Derivatives and Term Structure
7.8. Historical and Implied Volatility
7.9. Stochastic Volatility Models
7.10. Module Summary
Project 2: Volatility Surface Analysis Tool
Project 2 Overview
Step 1: Fetching Options Data
Solution: Fetching Options Data
Step 2: Calculating Implied Volatilities
Solution: Calculating Implied Volatilities
Step 3: Plot a 3D Volatility Surface
Solution: Plot a 3D Volatility Surface
Project Summary
Module 8: Automated & High-Frequency Trading
8.1. What is High Frequency Trading (HFT)?
8.2. Handling High-Frequency Tick Data
8.3. Latency Measurement and Simulation
8.4. Strategy Breakdown: HFT Market Making
8.5. Strategy Breakdown: Statistical Arbitrage
8.6. Signal Processing for HFT
8.7. Real-Time News Processing
8.8. Module Summary
Project 3: Design & Build a Limit Order Book
Project Overview
Step 1: Design the Data Structure
Solution: Design the Data Structure
Step 2: Add Functionality
Solution: Add Functionality
Step 3: Simulate Live Orders
Solution: Simulate Live Orders
Project Summary
Capstone Project: Coding a Simple HFT Market Making Bot
Project Overview
Step 1: Define a System and Class Architecture
Solution: Define a System and Class Architecture
Step 2: Define the Event Loop
Solution: Define the Event Loop
Step 3: Implement the Data Feeds
Solution: Implement the Data Feeds
Step 4: Implement the Order Manager
Solution: Implement the Order Manager
Step 5: Add Alpha to the Pricing Strategy
Solution: Add Alpha to the Pricing Strategy
Project Summary
Solution: Develop the Algorithm
Lesson content locked
If you're already enrolled,
you'll need to login
.
Enroll in Course to Unlock